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ABSTRACT 
 

We study a two type of demand situations inventory model for deteriorating items. First type the demand pattern 

follows linearly increase with time and secondly it follow exponential increase with time and finally shortage are allowed. 

Numerical example is used to illustrate the developed model. Sensitivity analysis of the optimal solution with respect to 

major parameter is carried out. 
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INTRODUCTION 
 

In real life, the harvest of food grains like paddy, wheat, and fruit like mango etc. is periodic. As there are a large 

number of landless people in the rural areas of India, there will be a constant demand for these food grains throughout the 

year. Due to  various reasons, some of the  farmers are forced to sell some part of their food grains and  as a result,        

they buy the food grains from the market towards the end of the production cycle. Therefore, the rate of demand for food 

grains remains partly constant and increases partly with time. 

The demand pattern assumed here occurs not only for seasonal product, but also for fashion apparel, computer 

chips of the advanced computer, spare parts, etc. The nature of demand for seasonal and fashionable products increasing 

then steady then decreasing and finally vanishes. The demand of the item increases with time and then stabilizers after 

some time and ultimately becomes constant. Thus the demand rate is deterministic when any new brand product is 

launched in the markets, the demand rate linearly depends on time, and later it gets stabilized in the market. 

Deterioration is defined as decay, damage, spoilage, evaporation, or drying out of products. Thus, the ideal case 

envisioned by the classical model remains an ideal one. The effects of deterioration are significant in many inventories 

systems, making the problem of how to control and maintain inventories of deteriorating items a major issue for decision 

makers in modern organizations. In addressing this issue, Ghare and Schrader (1963) first proposed a model for an 

exponentially decaying inventory. Sahu et al.(2006),Sethi and Sahu (2007),Sahu  et  al.  (2007),Samal  et  al.(2008),  

Kalam et al.(2008),Sahu and Sukla(2008), Begum et al, (2009) developed a model with exponential demand for finite 

production rate and shortages. There exist several inventory models that take into account the constant deterioration rate, 

Weibull deterioration rate, and linear time fluctuating demand. These inventory models were developed by Goswami and 

Chaudhuri (1991), Chakrabarti and Chaudhuri (1997), Giri et al. (2000),Singh et al.(2012), Yang (2010), Skouri et al. 
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(2011), Begum et al.(2009),Samal et al.(2009),Shah (2015),  Taleizadeh  et  al.(2016).  Jalan  and  Chaudhuri  (1999),  

Sahu and Dash (2006) developed inventory models with constant deterioration, constant demand, and instantaneous 

replenishment. The inventory models with a fixed deteriorating rate and an exponential time fluctuating demand and these 

were considered by Wee (1995), and Hariga and Benkherouf (1994). The situation of deterioration and permissible 

shortages is developed by Jamal et al. (1997) and Chang and Dye (2001). Hsu et al. (2010) built a deterioration inventory 

model considering constant demand, deterioration rate, and preservation technology investment that reduces the 

deterioration rate of products. A numerous number of researchers have investigated on inventory models with constant 

demand  rate  or  time-varying  demand  patterns.  A  few  of  the   researchers  like   Barbosa   and   Friedman  (1978), 

Data and Pal (1988, 1990), Urban (1992), Urban and Baker (1997), Ray et al.(1998),.Donaldson (1977) first developed an 

exact solution procedure for items with a linearly increasing demand rate over a finite planning horizon. 

In this paper, we study a two type of demand situations inventory model for deteriorating items. The first type the 

demand pattern follows linearly increase with time and secondly it follow an exponential increase with time and finally 

shortage occurred. The demand of a product may increase with time due to the incoming of a new product like vegetables 

and fruits, which may be technically good and attractive than old one, and also the demand of the new product may 

increase, decrease with time. In a real market situation, demand is unlikely increases at a rate, which is very high as linear 

and exponential. 

NOTATION & ASSUMPTION 
 

         Deterioration rate. 

h
        

Inventory holding cost per item per unit time. 

s          Shortage cost per item per unit time. 

A         Set-up cost per cycle. 

p         Purchasing cost per unit item. 

c
         

Time horizon. 

d
         

Deteriorating cost per unit time. 

r
          

Revenue cost per unit time. 

o
         

Ordering cost per unit time. 

 

The inventory system is based on the following assumptions: 

 

1.A single item is considered in the inventory system. 

2.Replenishment rate is finite 

3. Lead time is zero 

4.Shortages are allowed. 

5.The demand rate at first time period follow linear 0,,)(   ttD  Secondly the     

    demand 0,,)(    tetD  

6.The deterioration rate of items is constant. 
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MODEL FORMULATION 

At the start of the cycle, the inventory level is maximum units of items at time 0t .During the time interval ],0[ a  

inventory depletes due to mainly demand and no deterioration. At time at  , the inventory depletes due to exponential 

demand and time bt   the inventory level is zero. The change in inventory at any time t are governed by the following 

differential equations: 

 

t
dt

tdI
 

][
               at 0                                                                    (1) 

With boundary condition QI ]0[  

tetI
dt

tdI   ][
][

  
bta 

                                                                             
(2) 

Where 10  ,With boundary condition 0][ bI  

 

 
Figure 1:The system of inventory  with linear demand ,exponential demand Pattern and shortage 

 


dt

tdI ][
             

ctb 
                                                                                          

(3) 

With boundary condition 0][ bI  

 
The solution of equation (1),(2)  & (3) are  

                                      222
2

1
][ ttQtI 

     

at 0  
                                                                 (4)                                                

 

    

 









 )()(

][
tbt eee

tI
, 

bta                                                                (5) 

 

   
tbtI  ][  ,   ctb                                                                                            (6) 
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(A) Holding Cost(HC)
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(B) Shortage Cost(SC)
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(C) Deteriorating Cost (DC)
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(D) Ordering Cost (OC)

 

A

                               

 

(E) Purchasing Cost(PC)

 

  cbQp 

 

 

(F) Sales Revenue (SR)=
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(G) Total average profit G = 

c
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The necessary condition for optimality of ),,,,,,,,,,,,,( dAoeQpsrhcbaG   is  

0
aG  

0
bG  

0
cG  

EXAMPLE 

We consider the parameter lues 10 , 1.0 , 2.0h , 5r , 2s , 3p , 100Q , 3.0 , 8.2e  ,     

100A , 4o , 1d ,then 
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2232 1020100033.025.199.29300 ccbaaaG 
bae 4.03.066.1   

                         
be 1.066.11 aecb 1.010)1(20   

025.1)10(1.0005.025.215 4.03.01.02   baa

G eeaaa
a

                           

 (i) 

0)2.8(1.067.0202121 1.04.03.0   bba

G ebecb
b

                                       (ii) 

0202020  cb
cG                                                                                                           (iii) 

By solving the equation (i),(ii) & (iii) using Mathematica 9, we get 

74.6a , 54.9b , 03.10c , 67.481G  

 

 

 

 

Figure 2: Total Inventory Cost for the above Example 

 

SENSITIVITY ANALYSIS 

Effect on G by changing of % value of parameters 

 

Table 1: Change of value of ''  

Original 

Value 

% of changes Changed Value Ratio of changed values to 

original values G 

10  +50 15 +2.394 

10  +25 12.5 +1.698 

10  -25 07.5 +0.302 

10  -50 05 -0.395 
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Table 2: Change of value of ''  

Original 
Value 

% of changes Changed Value Ratio of changed values to 
original values G 

1.0  +50 0.05 +0.982 

1.0  +25 0.025 +0.989 

1.0  -25 0.125 +1.004 

1.0  -50 0.15 +1.008 

 

Table 3: Change of value of ''  

Original 

Value 

% of changes Changed Value Ratio of changed values to 

original values G 

3.0  +50 0.45 +0.998 

3.0  +25 0.375 +0.999 

3.0  -25 0.225 +1.001 

3.0  -50 0.15 +1.002 

 

Table 4: Change of value of ''h  

Original 

Value 

% of changes Changed Value Ratio of changed values to 

original values G 

2.0h  +50 0.3 +0.905 

2.0h  +25 0.25 +0.949 

2.0h  -25 0.15 +1.046 

2.0h  -50 0.1 +1.095 

 

Table 5: Change of value of '' r  

Original 

Value 

% of changes Changed Value Ratio of changed values to 

original values G 

5r  +50 7.50 +2.357 

5r  +25 6.25 +1.678 

5r  -25 3.75 +0.321 

5r  -50 2.50 -0.357 

 

Table 6: Change of value of '' s  

Original 

Value 

% of changes Changed Value Ratio of changed values to 

original values G 

2s  +50 3 +0.997 

2s  +25 2.5 +0.998 

2s  -25 1.5 +1.001 

2s  -50 1 +1.003 

 

Table 7: Change of value of '' p  

Original 

Value 

% of changes Changed Value Ratio of changed values to 

original values G 

3p  +50 4.5 +0.673 

3p  +25 3.75 +0.837 

3p  -25 2.25 +1.163 

3p  -50 1.5 +1.327 

 

 

mailto:editor@impactjournals.us


Impact Factor(JCC): 3.7985 - This article can be downloaded from www.impactjournals.us 

A Deteriorating Inventory Model With Linear, Exponential Demand With Shortage 177 
 

 

 

Table 8: Change of value of ''o  

Original 

Value 

% of changes Changed Value Ratio of changed values to 

original values G 

4o  +50 6 +0.584 

4o  +25 5 +0.792 

4o  -25 3 +1.207 

4o  -50 2 +1.415 

 

Table 9: Change of value of '' A  

Original 

Value 

% of changes Changed Value Ratio of changed values to 

original values G 

100A  +50 150 +0.584 

100A  +25 125 +0.792 

100A  -25 75 +1.207 

100A  -50 50 +1.415 

 

Table 10: Change of value of ''d  

Original 

Value 

% of changes Changed Value Ratio of changed values to 

original values G 

1d  +50 1.5 +0.981 

1d  +25 1.25 +0.991 

1d  -25 0.75 +1.009 

1d  -50 0.50 +1.018 

 

Table 11: Change of value of ''Q  

Original 

Value 

% of changes Changed Value Ratio of changed values to 

original values G 

100Q  +50 150 +0.548 

100Q  +25 125 +0.774 

100Q  -25 75 +1.225 

100Q  -50 50 +1.451 

 

By increasing the value of " " by 50% ,25%,the optimum value "G" changed by 2.393,1.698  times respectively 

from its original values. Similarly by decreasing the value of " " by 25%, 50%, the optimum value "G" changed by 0.302,-

0.395 times respectively from its original values.  Finally we conclude that by increasing the value of " “, value of "G" 

increasing and by decreasing the value of " " , value of "G" decreasing.   

 

By increasing the value of "  " by 50% ,25%,the optimum value "G" changed by 0.982,0.989  times respectively 

from its original values. Similarly by decreasing the value of "  " by 25%, 50%, the optimum value "G" changed by1 .004, 

1.008 times respectively from its original values.  Finally we conclude that by increasing the value of "  “, value of "G" 

decreasing and by decreasing the value of "  “, value of "G" increasing.   

 

By increasing the value of " " by 50% ,25%,the optimum value "G" changed by 0.998 , 0.999  times respectively 

from its original values .Similarly by decreasing  the value of " " by 25% ,50%,the optimum value "G" changed by 1.001, 
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1.002  times respectively from its original values.  Finally we conclude that by increasing the value of " “, value of "G" 

decreasing and by decreasing the value of " “, value of "G" increasing.  

  

By increasing the value of " h " by 50% ,25%,the optimum value "G" changed by 0.905, 0.949  times respectively 

from its original values. Similarly by decreasing the value of " h " by 25%, 50%, the optimum value "G" changed by 1.046, 

1.095 times respectively from its original values.  Finally we conclude that by increasing the value of " h ", value of "G" 

decreasing and by decreasing the value of " h ", value of "G" increasing.    

 

By increasing the value of " r " by 50% ,25%,the optimum value "G" changed by 2.357,1.678  times respectively 

from its original values. Similarly by decreasing the value of " r "by 25%, 50%,the optimum value "G" changed by 0.321,-

0.357  times respectively from its original values.  Finally we conclude that by increasing the value of " r ", value of "G" 

increasing and by decreasing the value of " r ", value of "G" decreasing.   

 

  By increasing the value of " s " by 50% ,25%,the optimum value "G" changed by 0.997 , 0.998  times 

respectively from its original values. Similarly by decreasing the value of " s " by 25%, 50%, the optimum value "G" changed 

by 1.001, 1.003 times respectively from its original values.  Finally we conclude that by increasing the value of " s ", value of 

"G" decreasing and by decreasing the value of " s “, value of "G" increasing.   

 

By increasing the value of " p " by 50% ,25%, the optimum value "G" changed by 0.673, 0.837 times respectively 

from its original values. Similarly by decreasing the value of " p "by 25%, 50%, the optimum value "G" changed by 1.163, 

1.327 times respectively from its original values.  Finally we conclude that by increasing the value of " p ", value of "G" 

decreasing and by decreasing the value of " p ", value of "G" increasing.   

 

By increasing the value of " o " by 50% ,25%,the optimum value "G" changed by 0.584, 0.792 times respectively 

from its original values. Similarly by decreasing the value of " o " by 25%, 50%, the optimum value "G" changed by 1.207, 

1.415 times respectively from its original values.  Finally we conclude that by increasing the value of " o ", value of "G" 

decreasing and by decreasing the value of " o ", value of "G" increasing.   

 

  By increasing the value of " A " by 50% ,25%,the optimum value "G" changed by 0.584, 0.792 times 

respectively from its original values. Similarly by decreasing the value of " A " by 25%, 50%, the optimum value "G" 

changed by 1.207, 1.415 times respectively from its original values.  Finally we conclude that by increasing the value of " A ", 

value of "G" decreasing and by decreasing the value of " A ", value of "G" increasing.   

 

By increasing the value of " d " by 50%, 25%, the optimum value "G" changed by 0.981, 0.991times respectively 

from its original values. Similarly by decreasing the value of " d "by 25%, 50%, the optimum value "G" changed by 1.009, 

 

 

mailto:editor@impactjournals.us


Impact Factor(JCC): 3.7985 - This article can be downloaded from www.impactjournals.us 

A Deteriorating Inventory Model With Linear, Exponential Demand With Shortage 179 
 

 

  

1.018 times respectively from its original values.  Finally we conclude that by increasing the value of " d ", value of "G" 

decreasing and by decreasing the value of " d ", value of "G" increasing.   

   

By increasing the value of " Q " by 50% ,25%,the optimum value "G" changed by 0.548, 0.774  times respectively from its 

original values. Similarly by decreasing the value of " Q "by 25%, 50%, the optimum value "G" changed by 1.225, 1.451 

times respectively from its original values.  Finally we conclude that by increasing the value of " Q ", value of "G" decreasing 

and by decreasing the value of " Q ", value of "G" increasing 

CONCLUSION 

The demand of a product may increase with time due to the incoming of a new product like vegetables and fruits 

which may be technically good and attractive than old one, and also the demand of the new product may increase, decrease 

with time. In a real market situation, demand is increases at a rate, which is very high as linear and exponential. Whenever 

some new attractive products launched in super market or some seasonal items happen in beginning of season like winter, the 

demand of that product or item is increasing depending upon rate of purchase. This type of demand is quite appropriate for 

products like winter vegetables, fruits in the city of Himachal Pradesh, Jammu-Kashmir and summer vegetables, fruits in the 

city of Odisha like Berhampur especially mango market, Rourkela market etc. As the season progress, the demand rate goes 

on increasing and gradually approaching a saturation level and finished. 
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